Complexity of Pseudoknot Prediction in Simple Models

نویسنده

  • Rune B. Lyngsø
چکیده

Efficient exact algorithms for finding optimal secondary structures of RNA sequences have been known for a quarter of a century. However, these algorithms are restricted to structures without overlapping base pairs, or pseudoknots. The ability to include pseudoknots has gained increased attention over the last five years, but three recent publications indicate that this might leave the problem intractable. In this paper we further investigate the complexity of the pseudoknot prediction problem in two simple models based on base pair stacking. We confirm the intractability of pseudoknot prediction by proving it hard for binary strings in one model, and for strings over an unbounded alphabet in the other model. Conversely, we are also able to present a polynomial time algorithm for pseudoknot prediction for strings over a fixed size alphabet in the second model and a polynomial time approximation scheme for pseudoknot prediction for strings over a fixed size alphabet in the first model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heuristic RNA pseudoknot prediction including intramolecular kissing hairpins.

Pseudoknots are an essential feature of RNA tertiary structures. Simple H-type pseudoknots have been studied extensively in terms of biological functions, computational prediction, and energy models. Intramolecular kissing hairpins are a more complex and biologically important type of pseudoknot in which two hairpin loops form base pairs. They are hard to predict using free energy minimization ...

متن کامل

Dynamic programming based RNA pseudoknot alignment

Pseudoknots are certain structural motifs of RNA molecules. In this thesis we consider the problem of RNA pseudoknot alignment. Most current approaches either discard pseudoknots in order to be efficient or rely on heuristics generating only approximate solutions. This work focuses on dynamic programming based alignment methods and proposes two new approaches for an exact solution of the alignm...

متن کامل

CyloFold: secondary structure prediction including pseudoknots

UNLABELLED Computational RNA secondary structure prediction approaches differ by the way RNA pseudoknot interactions are handled. For reasons of computational efficiency, most approaches only allow a limited class of pseudoknot interactions or are not considering them at all. Here we present a computational method for RNA secondary structure prediction that is not restricted in terms of pseudok...

متن کامل

Implementation Improvements to an Rna Pseudoknot Prediction Algorithm

ALGORITHM by YUNZHOU WU (Under the Direction of Liming Cai) ABSTRACT The general problem of RNA pseudoknot prediction is computationally intractable. Most existing algorithms require the worst case CPU time O(N) and RAM space O(N) even for restricted pseudoknot categories. Such resource requirements make it infeasible to predict pseudoknots for RNA sequences of even a moderate length. This rese...

متن کامل

Sparsification Enables Predicting Kissing Hairpin Pseudoknot Structures of Long RNAs in Practice

While computational RNA secondary structure prediction is an important tool in RNA research, it is still fundamentally limited to pseudoknot-free structures (or at best very simple pseudoknots) in practice. Here, we make the prediction of complex pseudoknots – including kissing hairpin structures – practically applicable by reducing the originally high space consumption. For this aim, we apply ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004